MathJax TeX Test Page
Find values of $\varepsilon_1$ and $\varepsilon_2$ that satisfy Definition (16.12).
$$f(x,y) = (2x-y)^2$$
Recall that 16.12, or our definition for $$\Delta{}w =
f_x(x_0,y_0)\Delta{}x + f_y(x_0, y_0)\Delta{}y + \varepsilon_1\Delta{}x + \varepsilon_2\Delta{}y = f(x + \Delta{}x, y + \Delta{}y) - f(x,y)$$
So, what we have to do is find $f(x + \Delta{}x, y + \Delta{}y) - f(x,y)$, and make sure it equals our real definition.
$$f(x + \Delta{}x, y + \Delta{}y) - f(x,y) = ((2x + 2\Delta{}x) - (y + \Delta{}y))^2 - (2x - y)^2$$
$$= (2x + 2\Delta{}x)^2 + (y + \Delta{}y)^2 - 2(2x + 2\Delta{}x)(y + \Delta{}y) - 4x^2 + 4xy - y^2$$
$$ = 4x^2 + 8x\Delta{}x + 4\Delta{}x^2 + y^2 + 2y\Delta{}y + \Delta{}y^2 - 2(2xy + 2x\Delta{}y + 2y\Delta{}x + 2\Delta{}x\Delta{}y) - 4x^2 + 4xy - y^2$$
$$=8x\Delta{}x + 4\Delta{}x^2 + 2y\Delta{}y + \Delta{}y^2 - 4x\Delta{}y - 4y\Delta{}x - 4\Delta{}x\Delta{}y$$
$$f_x(x,y) = 8x - 4y, f_y(x,y) = 2y - 4x$$
Therefore, we must have terms like
$$(8x - 4y)\Delta{}x, (2y - 4x)\Delta{}y$$
So, we get
$$(8x-4y)\Delta{}x + (2y-4x)\Delta{}y + 4\Delta{}x^2 + \Delta{}y^2 - 4\Delta{}x\Delta{}y$$
$$(8x-4y)\Delta{}x + (2y-4x)\Delta{}y + (4\Delta{}x - 4\Delta{}y)\Delta{}x + (\Delta{}y)\Delta{}y$$
$$\varepsilon_1 = 4\Delta{}x - 4\Delta{}y$$
$$\varepsilon_2 = \Delta{}y$$
Note that how you partition the epsilons doesn't matter, as long as they approach zero as $\Delta{}x,y \to 0$, then it's fine.