MathJax TeX Test Page
So, we have $L = \begin{bmatrix}1 & 0 & 0\\-3 & 1& 0\\-3& \frac{7}{11} & 1\end{bmatrix}$, and $U = \begin{bmatrix}1 & 3 & 4\\0 & 11& 6\\0& 0 & \frac{13}{11}\end{bmatrix}$
So, we must do $Ly = b$ first.
$$\begin{bmatrix}1 & 0 & 0\\-3 & 1& 0\\-3& \frac{7}{11} & 1\end{bmatrix}y = \begin{bmatrix}4\\-25\\-18.5\end{bmatrix}$$
We can turn this into a system of equations, with the variables being $y_1, y_2,$ and $y_3$
$$\begin{bmatrix}1 & 0 & 0 & 4\\-3 & 1& 0 & -25\\-3& \frac{7}{11} & 1 & -18.5\end{bmatrix}$$
Let's start with the first row. Here, we instantly see that $y_1 = 4$. Now, we move on to the second row. $-3(4) + y_2 = -25$. So, $y_2 = -13$. Last, we move on to the third row. $-3(4) - 13(7)/11 + y_3 = -18.5$ So, $y_3 = \frac{19.5}{11}$.
We now have to solve the equation $Ux = Y$.
$$\begin{bmatrix}1 & 3 & 4\\0 & 11& 6\\0& 0 & \frac{13}{11}\end{bmatrix}x = \begin{bmatrix}4\\-13\\\frac{19.5}{11}\end{bmatrix}$$
Once again, we turn this into a system of equations, where the columns correspond to $x_1, x_2, and x_3$.
$$\begin{bmatrix}1 & 3 & 4 & 4 \\0 & 11& 6 & -13\\0& 0 & \frac{13}{11} & \frac{19.5}{11}\end{bmatrix}$$
Let's start in the third row this time, because there is only one element present. We can see that $x_3 = \frac{19.5}{13} = 1.5$
We now move one row up $11x_2 + 6(1.5) = -13$. So, $x_2 = -2$. Now, we move to the top row $x_1 + 3(-2) + 4(1.5) = 4$, so $x_1 = 4$.
Finally, we get our solution: $\boxed{x = \begin{bmatrix}4\\-2\\1.5\end{bmatrix}}$