Definition
An orthogonal complement of some vector space V is that set of all vectors x such that x dot v (in V) = 0.
Example
Example 1:
Example 2:
Example 3
This is equivalent to finding the orthogonal complement of the row space of $\begin{bmatrix}1 & 2 & -1\\1 & 2 & -1\\-1 & 0 & -1\\0 & 1 & -1\end{bmatrix}$
This equals the null space of that matrix. $$\begin{bmatrix}1 & 2 & -1\\1 & 2 & -1\\-1 & 0 & -1\\0 & 1 & -1\end{bmatrix} \to \begin{bmatrix}1 & 2 & -1 \\ 0 & 0 & 0 \\0 & 2 & -2\\0 & 1 & -1\end{bmatrix} \to \begin{bmatrix}1 & 0 & 1 \\ 0 & 1 & -1 \\0 & 0 & 0\\0 & 0 & 0\end{bmatrix} $$ $x_1 = -x_3, x_2 = x_3$ $$x_3\begin{bmatrix}-1\\1\\1\end{bmatrix}$$ Therefore our solution is the span of $\begin{bmatrix}-1\\1\\1\end{bmatrix}$